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ON C-STABILITY OF DIFFERENCE BOUNDARY PROBLEMS
OF GENERAL TYPE*

S.1.Serdyukova

The stability in space C of linear difference initial boundary-value problems with constant
coefficients is investigated. Such problems are usually used to understand the instability cause.
The necessary and sufficient C-stability conditions are proved. The principal point of the proof
is construction of a simple quasi-Jordan normal form of the resolvent matrix in a neighborhood
of |zl =1. The detailed asymptotics of the difference Green functions are constructed by
using the saddle point method. The nonlinear instability observed in numerical simulations of
fluxon dynamics is studied by using these asymptotics. The problem of stability verification
on PC by using computer algebra systems is discussed shortly.

The investigation has been performed at the Laboratory of Computing Techniques and
Automation, JINR.

06 yctoiukBocTH B C pa3sHOCTHBIX KpaeBbIX 3a/a4 o01Iero Buaa

C.H.Ceporokosa

Hccneayerca ycroitunsocTs B C JIMHEHHBIX Pa3HOCTHBIX KpaeBhiX 3afa¥ C NOCTOAHHBIMH
koappuumuenramu. Takue 3anadn OOBIYHO MCMOABIYIOTCH WIA BLIACHEHHS NMPHYMH HEYCTO-
unBoCTH. Jloka3aHbl HeOOXOAHMbIE H JOCTATOYHbIE YCIOBHS YCTOHUMBOCTH B C. IpHHUMNHKAL-
HYI0 TPYAHOCTb NPEACTABISET MOCTPOEHHE NPOCTOH KBa3HXOPXaHOBOH HOPMaTbHOM (hOpMbi
PE30JILBEHTHOH MaTpPHIbI B OKPECTHOCTH eXHHHYHON OKPYXHOCTH [z] = 1. Merozom nepesana
NOCTPOEHbI AETATbHbIE ACHMNTOTHKH pa3lHOCTHbIX ¢yHkumii Ipuna. C nomollblo 3THX
ACUMNTOTHK HCCEN0BaH 3PEKT HENHHEHHOH HEYCTONYHBOCTH, HaONIONABLIMICA IPH YHCIEH-
HOM MOIE/THPOBaHHH IHHAMHKH (riokcoHoB. KopoTko obcyxnaercs npobiema nposepky yc-
TOHYHBOCTH Ha PC ¢ Hcnonb3oBaHHEM CHCTEM KOMMBIOTEPHOM anreGphi.

Pabora BeinosnHeHa B JlTabopatopii BHIMHCTHTENILHON TEXHHKH M apToMaTu3auny OMSIH.

At JINR the finite-difference method is widely used in numerical simulations of
physical processes (calculation of electromagnetic fields in accelerators, computing of
bound states in the theoretical nuclear physics, studying of wave motion on lattices in
condensed matter physics and others). The construction of effective numerical algorithms is
connected with the solution of the stability problem. In this work the necessary and
sufficient conditions of C-stability for linear boundary difference systems with constant
coefficients are presented. Such model problems are used to study the instabilities observed
in real calculations. Full theoretical investigation of numerical algorithms for solving

*On the basis of the lecture delivered at the Mittag-Leffler Institute, the Royal Swedish Academy of Sciences,
Djursholm, Sweden.
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complicated applied problems, as a rule, is as unreal as solving them without computer.
However, when the instability cause is understood, we usually succeed in finding an
efficient stable algorithm of solving original applied problem. In this work we discuss
studying of two instabilities observed in numerical simulation of fluxon dynamics in one-
dimensional Josephson junctions with micro-heterogeneities.

The stability in space C of difference problems

2

o= 3 A, nz0, van W=f, 5l <q (1)
I=—rl
S
=Y C V', m=-rl+1,.,0, )
o
J:

is discussed. Here 1)]',' are k-dimensional vectors, Aj , ij are constant matrices. We suppose
that r1 21 and det (A-rl) #0, det (Arz) # 0. The necessary and sufficient conditions are pro-

ved without any additional conditions [1].

Denote by B the Banach space of semi-infinite vector-sequences V={1)v }V> e

satisfying boundary conditions (2). The norm in space Bis simply C-norm:

| VI = sup ( max |D(z)!)

vl I<i<k

We rewrite the considered initial boundary-value problem (1), (2) in operator form

Vn+1 =GV".

G is bounded operator in space B
We use the classic stability definition: the problem (1), (2) is stable in space

C if there exists a positive constant ¢ such that inequality || V") <c|| V0|| holds for all

n20 and all V< B

The necessary stability conditions are well known [2], [3]. The corresponding
Cauchy problem must be stable in space C. It’s natural here — we consider explicit
difference systems. In addition the spectrum of G must lie in the unit disc |z] < 1.

We use the classic spectrum definition: a point z, of complex plane is

spectrum point of G if there is found nonzero V, from Bsuch that GVy=2,V,

If there are spectrum points outside the unit disk, G powers (|| G"||) grow
exponentially when n increasing to infinity.

To get necessary and sufficient stability conditions we present G powers as an integral
of the resolvent:

G'=- 2m§(c 'z
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Here T is a closed line rounding all spectrum points of G which are singularities of the

resolvent (G -z I)"l. We need the explicit form of the resolvent near the unit circle I z| =1.
To find explicit form of the resolvent means to find explicit solution of the following
eigenvalue problem:

r2
2 Aluv+l_zuv=fv’ vzl
I=-rl 3)

5
=E C u, m=-ri+1,.,0.
m im’j
j=1

Here {f} and {u )} are given and found sequences, respectively. After the change of
variables

Y =[u

*
v v+r2-1"" uv’ o uv—rl]
(* asterix transforms row-vector into column-vector) the system (3) takes the form
Yv+ 1 =M(z)Yv+ Fv, v21,
)
sl

[0,11¥,= 3, [0,B)Y,, .
I=rl

Here M(Z) is a resolvent matrix:

e -1 -1 ]
ApAp_1 o Ay -2D) - ApA
I 0.. 0 ... 0 0
M(z) = ,
0 0.. 0 oI 0

depending linearly on z. The vectors F, are defined as follows F, = [A:Zlfv, 0,..,01". And
B, in the boundary condition are constant matrices constituted from the initial constant
boundary matrices C. .

jm

To construct the resolvent we reduce M(z) to the simple quasi-Jordan normal form.
M(z) is square matrix of high (rl +r2)- k order. The problem is solved in general form
thanks to the following. Eigenvalues x of the resolvent matrix and eigenvalues A of the
characteristic matrix

r2
D(eiq’) = Z Aj e’ ?®
j=-rl
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are one-to-one algebraic functions. Knowing the structure of A we can determine the
structure of X. The basis in which the resolvent matrix takes simple quasi-Jordan normal
form is constructed from the corresponding basis for the characteristic matrix.

We present first the quasi-Jordan normal form for the characteristic
matrix. When the Cauchy problem is stable the von-Neumann condition is fulfilled:

I?»(ei¢)| <1, 0<¢<2r. In the case of C-stability there can be only a number of isolated

. . i .
points of the unit circle e%, where some A take values equal to one in absolute value:

X(e'%):ew". We call such points the determining points. If the Cauchy problem is
C-stable, principal eigenvalues have special expansions near the determining points

(41, [5]:
X(e"‘»):exp {i\]lo+i'y(¢—¢o)+(ia_ﬁ)(¢_¢o)2u+0((¢_¢0)2}1+9)}‘
Here ¢, vy, v, o are real, B, 6 are positive, W is integer. The principal

parts of these expansions

A= exp {iy +i (0 - 0p) + (iot— B)(® — 0)™)
have only integer powers of (¢ = 9y).

With respect to every determining point e % eigenvalues of D split into the classes

ApAp s Ay M=1(0y).

The class A, contains eigenvalues less than one in absolute value in the considered
determining point. Main eigenvalues 7L’., 7&1. belong to the class Ag if their principal parts are
equal identically X‘. -37—»1. .

It had been proved [6] that, if the Cauchy problem is C-stable, the characteristic matrix
is reduced (in a neighborhood of the determining pints by nonsingular analytic similarity
transformation) to the special block-diagonal form D = diag 4, C,, ..., Cn)' The block A has

Ac A, Each class A§ of main eigenvalues has the block Cg of simple (Jordan in principal
part) structure

Ce =MI+ AN(® = 8™ + (0= 0™ * 'Ry(0).
Here A is the principal part of eigenvalues from the considered class Agv I is the unit matrix,
A is any constant and Rg(cp) is analytic matrix of general type. All matrices here have only
integer powers of (-9, in their expansions. We call such block-diagonal form «quasi-

Jordan normal form». It has the Jordan structure in principal part determining the stability.
Now we return to the resolvent matrix.

The Cauchy problem stability implies [2] that for z lying outside the unit disk
eigenvalues of the resolvent matrix are devided into two nonintersecting sets: there are
exactly rl1- k eigenvalues x less than one in absolute value and exactly r2- k eigenvalues x
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greater than one in absolute value. When z changing outside the unit disk, eigenvalues x
can’t go from one set to another. But when z reaches the unit circle, some x can take limit
values equal to one in absolute value. Point y, is called the determining point for

the resolvent matrix if in this point at least one k is equal to one in absolute value:

i i . .. . Lo .
K(e w") =e ¢°. In such case ¢, is determining point for the characteristic matrix and for some

- . i i . .
eigenvalue of the characteristic matrix A(e °>°) =¢ 10 The expansions of main x near the

determining points are obtained by inversion of the corresponding A-expansions. It’s well
known [5] that the difference Green function is located near difference characteristics
defined by v ++n =0, where iy are coefficients by linear terms in A-expansions. We call
hyperbolic eigenvalues A with slope characteristics, with y=0.

The hyperbolic class Ag with the principal part

A=exp {iyy+i 70— ) + (- B)O - 9%}, ¥#0,
generates the unique hyperbolic x-class ICé with

v-y, Pp-ia
+ Y2 W-yp™t.

K=exp{id,+i

0

As ot is real, B >0, p is integer, the hyperbolic A-classes with negative y generate x-classes
of eigenvalues less than one in absolute value. And the hyperbolic A-classes with positive
Y generate K-classes of eigenvalues greater than one in absolute value. We mean here z lying

outside the unit disc in a neighborhood of considered determining point e Yo,

Each parabolic eigenvalue A with A =exp {iy, + (i - B)(¢ - ¢0)2“} generates 24 eigen-
values x with

2
W—WO "
a+ip A

fl=exp i¢0+i(

With properly chosen branches the first p eigenvalues K, are less than one in absolute value.

And the rest [ ones are greater than one in absolute value. We mean again z lying outside
the unit disc in a neighborhood of the considered determining point e w". So every parabolic

/\g class generates 2y parabolic x-classes. The first u classes ICél, ’Cép form set ICé

of eigenvalues less than one in absolute value. The rest [ classes ICgl, Klép form set

ICE of eigenvalues greater than one in absolute value. Now we can present quasi-Jordan

normal form of the resolvent matrix [1].
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Theorem 1. If the Cauchy problem is C-stable, and the boundary matrices A_,,A,are

i . T
nonsingular, for every determining point e Yo there is found analytic nonsingular similarity
transformation T(y), l\y—\yol < p, which reduces the resolvent matrix to the following
quasi-Jordan normal form:

 [M000
B]|lo ABoO .
0 00 M,

Block M|, has eigenvalues less than one in absolute value for |z| > 1. Block M,, has
eigenvalues greater than one in absolute value for |z| > 1. Block M, has eigenvalues
lx] < 1 for |2 -zol < p. Block M, has eigenvalues lx| > 1 for |z zol < p. Matrices A, C
have block-diagonal structure. The hyperbolic classes ICg have blocks of such quasi-Jordan

structure

Cy =R I+ AN(Y ~ ™ + (W =y * 'Ry(w).
The hyperbolic classes with y< 0 have the blocks Cg on the diagonal of A, the hyperbolic
classes with y> 0 have the blocks Cg on diagonal of C. The sets ICé , ICg of the parabolic

K-classes have matrix Jordan boxes Cgl, C§2 on the diagonals of A and C respectively:

P 1 0. 0
1(2)
cio_| 0 G 1 0
5 I
1(2)
[0 0 0GP

On the diagonals of these matrix Jordan boxes stay quasi-Jordan blocks corresponding to
the separate parabolic x-classes:

12)_— 1/2n (1/2u)+ 6, 1(2) .
C&i - K,'(,' + u)(] + AN(\I" - Wo)i(i + “) + (W - \VO)i(i + Ll) Rg, (\V))’ 1= l’ R ll

Their principal parts have Jordan, structure again. But this time there are fractional powers
of (\|l-\410). On the whole big matrix Jordan box C22 corresponds to the set of parabolic
eigenvalues x generated by the parabolic class 1\§ (with y=0):
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Céll 0 o | o 0
1

OC&I...O|O 0
I | 0

1
0 0 ...Cgu|1 0 0 ... 0
C§=———--—...—| _ . —
0 0 0 |C§ll 0 0

2

0 0 OlOC&I...O
| 1
2
_0 0 0 .. 0 ] o 00'"%_

The block Cé belongs to A, the. blocks Cg’ belongs to C. The rest nonzero north-east block

belongs to B. The block B contains the unit matrices coupling the boundary blocks C ! and

&
Cél. On other places of B zeros stay.

Remark that there is complete analogy of constructed quasi-Jordan analytic normal
form of the resolvent matrices with the canonical Jordan form of the constant matrices. The
role of the eigenvalues is played by the quasi-Jordan blocks C,, Céi, Cgi corresponding to
K-classes. The role of Jordan boxes is played by the matrix Jordan boxes C§ corresponding

to the sets of k generated by the parabolic A-classes Ag (with y=0).
When the system has only slope characteristics, the block B is zero matrix. So the

resolvent matrix is factored completely. All matrices have only integer powers (W -y, in
their expansions near the determining points Y, When the system has vertical charac-

teristics, the complete factorization is impossible. The presence of fractional powers is
inevitable.
After the quasi-Jordan normal form of the resolvent matrix is constructed, we can

present the explicit form of the resolvent for z lying near the unit circle. The
explicit solution of the system (4) is
v-1 v-1
=Ml 3 MY MY el 2 MY S a TR -
E=1

+B Z My TN TR,
-1

v
=My wie X MY UTRATRY v,
E=1

v
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wi=- Y M;§(T“F§)2,
E=1

sl
Kw ; =K,w f + gz [Bé(T—lF§)1 +B§(T—1F§)2].
=1

Here w\l, and w\zl are vectors composed of the top r1-k and bottom r2-k components of the

vector WV =77} Yv , and K1 and K2 are analytic matrices

sl
-7 _ <
Ki=Ty- % BT, M3,
E=rl
s1 &-1
Ky=-Typ+ > BT, ,M3+T, 3 MS1-npyn-i
2= 22+§ eTpM 55+ Ty 11 2 )
=rl

n=1
T= Tll T12
T21 T22
T“, T22 are square matrices of orders rl-k, r2:k, respectively. It’s clear now that the
resolvent singularities are singularities of K,(2). It had been proved [2] that

Z, belongs to the G-spectrum iff det K 1(zo) =0, Izol >1.

To simplify the stability theorem formulation we consider in addition two
singularity matrices S, S,

To get S, we replace in the block M, the block M, and all hyperbolic blocks Cg by
the unit matrices. In the parabolic matrix Jordan boxes Cé we replace the diagonal blocks

Céi by the singular diagonal matrices (y — ‘l’o)_(i_ D/24 I and remove all unit matrices on

the next diagonal — all Jordan connections are replaced by zero matrices.
To get S, we replace in the block M,, the block M, by the unit matrix. All hyperbolic

blocks Cg are replaced by the singular matrices (y —\;!0)°I 1. In the parabolic matrix Jordan

boxes Cé we replace the diagonal blocks sz;i by the singular diagonal matrices

(\y—\uo)_(“_”l)/ 21 and again remove all Jordan connections. Now we formulate the

stability theorem [1].

Theorem 2. The initial baundary-value problem (1), (2) is C-stable iff conditions 1.2,3
are satisfied. The first two are simply the necessary conditions.

1. The corresponding Cauchy problem must be C-stable [5].

2. The spectrum of G must lie in the unit disc lzl <1

The third condition refers to the spectrum points lying on the unir circle.

3. At the spectrum points Ly Izol =], the matrices
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SK'@ SKT@KS,

must have no singularities of order higher than the first. In the case of hyperbolic systems
(when the elements of the quasi-Jordan normal form of the resolvent matrix have only

integer powers in their expansions and S1 =1I) matrices K ;l(z), K;](z)KZ(z)S2 can have

singularities of the first order only. When there are vertical characteristics (there are
parabolic eigenvalues), fractional powers appear. So we say in general case «no
singularities of order higher than the first».

If the conditions 1,2 are satisfied but the condition 3 is violated, then || G"|| < n’

when n — . Here s is a maximum of diviations of admissible singularity orders over all
spectrum points lying on the unit circle.

The starting point for our research was remarkable work [2] of H.-O.Kreiss, where the
sufficient conditions of L,-stability for considered initial boundary-value problems (1), (2)

had been proved.

In my doctor dissertation [7], necessary and sufficient conditions of L2—stability for (1),

(2) have been proved. Principally new was the analysis of the spectrum points lying on the
unit circle. In the case of instability, the precise in order power estimates in L,

HG"l| <n',n— e,

have been proved. Only hyperbolic systems were analysed. Here we discuss C-stability for
the systems of general type.

Why do we neced stability in space C? It’s well known that in numerical
simulations the Gibbs phenomenon is observed near discontinuities. It had been proved
theoretically ([8], [[9], [10] and others) that in the case of G-stability weak exponentially
decreasing oscillations arise. If there is L,-stability only, the oscillations perturbing the

solution essentially develop near discontinuities.

Besides, when the high accuracy schemes are used, we need additional boundary
conditions. And we must choose such additional boundary conditions that distortion of the
solution were as small as possible. It had been proved theoretically ([11], [12] and others)
that when the problem with additional boundary conditions is stable in space C, the solution
«feels» these additional boundary conditions in the boundary layer of O(In N) length only.
Here N is the number of points in the unit interval.

The proof of the Theorem I and Theorem 2 contains algorithm for stability
verification, which can be realized on PC by using computer algebra systems. But hereby a
lot of new difficulties arise. In the process of proving, detailed asymptotics of the difference

Green functions were obtained [7], [13] by using the saddle point method. We mean
asymptotics of the integrals

5{3 (z- zo)‘gM 1@z, V21, no e
r
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Here & is a positive constant, M, is the block of the resolvent matrix. These asymptotics

can be used in studying problems with variable coefficients [14]. They can be useful as well
in studying nonlinear effects of instability. In the rest part we discuss two effects of
instability observed in numerical simulation of fluxon dynamics [15].

The fluxon motion in long Josephson junctions with micro-inhomogeneities is
described by the sin-Gordon equation with singularities in coefficient by sin (¢):

0,=0,—| 1= X pdx-x)|sin(9), -I<x<],

i=1
0 (~D=0()=0.

«The well formed fluxons» are used as initial data. For the sake of simplicity only, we

consider the unique micro-inhomogeneity in X, in what follows. When O(x,) # km, o, has

discontinuity in X,

0,055+ 0) = 0, (x; = 0) =~ sin (x;).

An energy relation

dt ~ dt 2

d€ _d ¥ + ¢
fe & [ 5 (1 - cosd) |dr—p(l —cos dx, H)=0 "
holds. It says that energy £ must stay constant.

The problem is solved numerically [15]. Beforehand we replace the sin-Gordon
equation by equivalent integro-differential system with respect to new variables u=¢,,

v =¢,. The differential part of the system is approximated by the Wendroff-Lax scheme or

the Rusanov scheme, delta function is approximated by h_18w . Here va is the Kronecker
0 0

symbol. The area of rectangle of the height A~ with interval [xy—h/2, xy+h /2] as foun-

dation is equal to 1. The discontinuity is well seen in numerical solution but it’s eroded.

The distortion of &(xy) value leads to violation of energy balance. In some cases «the

numerical energy» £ decreases and the fluxon is destroyed at the end.
To understand the nature of observed discontinuity erosion, we consider the following
model problem:

u=u - W8(x) sin (u), —oo < x < oo,

_]0 for x<0,
u(x,O)—{l for x=0.

This is nonlinear equation with 8-function in the coefficient by sin (4) again. The solution
of this problem is the sum of stationary step
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0 for x<0,
psinl for x20,

), ) ={
of height i sin1 and a step of the height (1 — t sin 1)

0 for x+1t<0,

uz(t,x,u)={l_usin1 for x+120.

with discontinuity moving along the characteristic of the primitive hyperbolic equation
u=u. By using the detailed asymptotics of the difference Green function and the

difference step function for this primitive hyperbolic equations we got [16] asymptotics of
exact solution of discrete approximations for the considered nonlinear model equation with
singularity in coefficients by sin (4). The found asymptotics say that the solutions of the
discrete problems approximate the solution of the considered model problem with wrong
parameter [ values: '

u,(x, ) +uy(t, x, 1), f#p

In order the solutions of the discrete problems approximate the right solution, we must use
in discrete problems fictitious " instead of . For the Wendroff-Lax approximation

x_ W sin 1
K =Sn(l—psin1)
and for the Rusanov approximation

,_ MUsinl
“sin(1-p(l+cpsin 1)’

n

Here c,, depends on the parameters of the scheme. Besides standard parameter a0 =1/h the

Rusanov scheme of the third-order accuracy has additional parameter ® which does not

influence the accuracy but gives possibility to rule the stability. The Rusanov scheme is

stable in space C if (o, ®) satisfy inequalities 0 <a < 1, 40 -o*<w<3. For a=1 /2,

o =2 (point from the C-stability region) we found that
_ —24d
(1-d3Bd%+27)’

)

where d is unique real solution of 2+272-4=0. So co=—0.1540.... We verify the p'

values found theoretically by the right calculations. In both the cases (the Wendroff-Lax
and the Rusanov approximations) we had perfect result.

In numerical simulations of fluxon dynamics we observed another instability
developing in the boundary region. The Rusanov scheme has 5 points in the low layer. So
we need additional boundary conditions. A number of second-order approximations were
used for this. And we observed steadily strong oscillations near boundary points. At last,
when the Wendroff-Lax approximation was used as additional boundary conditions, the
strong oscillations died down. The numerical experiments showed that the same strong
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oscillations arise in the case of the wave equations. And this is natural because the
singularity of the considered sin-Gordon equation is at the finite distance from the boundary
points. The oscillations develope before the singularity influences the solution in the bound-
ary region. So we can use the simple wave equation for studying observed boundary
instability.

We simply computed [17] by using the REDUCE system the spectra of two initial
boundary-value problems. In the first problem, one of the second-order approximations
leading to the strong oscillations was chosen as additional boundary condition. In the
second problem, the Wendroff-Lax approximation was used. The spectrum point
23 ==1.067... was found for the fist problem. This spectrum point lying very close to the
unit circle leads to the strong-oscillations. For the second problem the unique spectrum
point z,=0 was found. In both the cases the calculations were performed with o =1/2,
w=2.

The spectrum of the considered problem is described by a polynomial system

det R(z, K}, Ky Ky, K4)=0,
Pz, x)=0, i=1,2,3,4, [x@| <1, lz|>1,

K; are the roots of the characteristic polynomial of the 8th order with coefficients depending
on z. The elements of the i-th column of R matrix depend on z and x, only. We tried to

solve the considered polynomial system by the right method of REDUCE system without
success. After a number of elementary manipulations with the columns of R we get new

determinant equation detR(x,y,z)=0. Elements of R matrix are polynomials of
_ 1
x=K

possibility to exclude x|, K,. By using the Vieta relations in addition we found that x. z can

+ KZI, Y =X;K,, z. The symmetry of the roots of the characteristic polynomial gives

be presented as simple functions of y
x_l—31y Z_4y2+x(1—x)y+21y+l
1-4y?%’ 48y '

So the problem of spectrum calculation is reduced here to the solution of the unique poly-
nomial of the 18th order with big coefficients

18
Q)= 2, ay’, a =-8978432,..
i=0
Such polynomials can’t be computed and solved by hands. We solved the problem on PC
by using REDUCE system [17]. It was the first success. Then an algorithm for stability
verification on PC by using computer algebra systems was developed. We studied by this
algorithm a number of model problems of practical interest.

In particular, nontrivial difference problem with initial, additional boundary and
overlap conditions were studied [18], [19], [20]. Such problem appears, for instance, when
different overlap grids are used. The Rusanov scheme and the Gary scheme used in airflow
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simulations were studied. In the case of the Gary scheme the spectrum is described by a
system of 7 polynomial equations. The problem is reduced to the solution of the unique
polynomial equation of 924 order with huge coefficients [20]. This polynomial was
computed and factored on PC 486-66/16mb by using MAPLE system in 20 minutes
approximately. We get 9 different polynomials of order not more than 100. These polyno-
mials were solved by using REDUCE system. In the case of the grids without displacement
(with proper parameters) the unique in Izl 21 spectrum point zy =1 was found. This leads

to the power instability in space L,: || G ™| < Vn. Simple displasement provides stability.

This analytical results are in agreement with the results of numerical experiments [21]. We
studied an example of interesting instability phenomenon: the instability is observed in
computations only for even number of full steps on the overlap interval for the outflow
problem.
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